Divided power structures on Hopf algebras and embedding Lie algebras into special-derivation algebras
نویسندگان
چکیده
منابع مشابه
Killing Form on Quasitriangular Hopf Algebras and Quantum Lie Algebras
The basics of quasitriangular Hopf algebras and quantum Lie algebras are briefly reviewed, and it is shown that their properties allow the introduction of a Killing form. For quantum Lie algebras, this leads to the definitions of a Killing metric and quadratic casimir. The specific case of Uq(su(N)) is examined in detail, where it is shown that many of the classical results are reproduced, and ...
متن کاملOn Derivation Algebras of Malcev Algebras and Lie Triple Systems
W. H. Davenport has shown that the derivation algebra 3)(4) of a semisimple Malcev algebra A of characteristic 0 acts completely reducibly on A. The purpose of the present note is to characterize those Malcev algebras which have such derivation algebras as those whose radical is central and to obtain the same result for Lie triple systems. Analogous results are known to hold for standard and al...
متن کاملThe Cohomology of Restricted Lie Algebras and of Hopf Algebras
Introduction. In theory, the bar construction suffices to calculate the homology groups of an augmented algebra. In practice, the bar construction is generally too large (has too many generators) to allow computation of higher-dimensional homology groups. In this paper, we outline a procedure which simplifies the calculation of the homology and cohomology of Hopf algebras. Let i b e a (graded) ...
متن کاملLie $^*$-double derivations on Lie $C^*$-algebras
A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1986
ISSN: 0021-8693
DOI: 10.1016/0021-8693(86)90019-0